References
Arcan, M., Torregrosa, D., & Buitelaar, P. (2017). Translating
terminological expressions in knowledge bases with neural
machine translation. arXiv
preprint arXiv:1709.02184.
Arcan, M., Turchi, M., Tonelli, S., & Buitelaar, P. (2014). Enhancing
statistical machine translation with bilingual terminology
in a CAT
environment. Proceedings
of the 11th Biennial Conference of the Association for
Machine Translation in the Americas (AMTA
2014) (pp. 54–68). Association for Machine Translation in the Americas.
Chatterjee, R., Negri, M., Turchi, M., Federico, M., Specia, L., & Blain, F. (2017, September). Guiding
neural machine translation decoding with external
knowledge. Proceedings
of the Second Conference on Machine
Translation (pp. 157–168). 
Chen, L. H., & Kageura, K. (2019). Translating
terminologies: A comparative examination of NMT and PBSMT
systems. Proceedings of
Machine Translation Summit XVII Volume 2: Translator,
Project and User
Tracks (pp. 101–108).
Dinu, G., Mathur, P., Federico, M., & Al-Onaizan, Y. (2019). Training
neural machine translation to apply terminology
constraints. arXiv preprint
arXiv:1906.01105. 
Fadaee, M., Bisazza, A., & Monz, C. (2017). Data
augmentation for low-resource neural machine
translation. arXiv preprint
arXiv:1705.00440. 

Farajian, M. A., Bertoldi, N., Negri, M., Turchi, M., & Federico, M. (2018). Evaluation
of terminology translation in instance-based neural MT
adaptation. Proceedings
of the 21st Annual Conference of the European
Association for Machine Translation (EAMT
2018).
Haque, R., Hasanuzzaman, M., & Way, A. (2019a). Investigating
terminology translation in statistical and neural machine
translation: A case study on English-to-Hindi and
Hindi-to-English. Proceedings
of the International Conference on Recent Advances in
Natural Language Processing (RANLP
2019) (pp. 437–446).
Haque, R., Hasanuzzaman, M., & Way, A. (2019b). TermEval:
An automatic metric for evaluating terminology
translation in
MT. The 20th
International Conference on Computational Linguistics and
Intelligent Text Processing (CICLing
2019), La Rochelle,
France.
Hassan, H., Aue, A., Chen, C., Chowdhary, V., Clark, J., Federmann, C., Huang, X., Junczys-Dowmunt, M., Lewis, W., Li, M., Liu, S., Liu, T. Y, Luo, R., Menezes, R., Qin, T., Seide, F., Tan, X., Tian, F., Wu. L., Wu S., Xia, Y., Zhang, D., Zhang, Z., Zhou, Z., (2018). Achieving
human parity on automatic Chinese to English news
translation. arXiv preprint
arXiv:1803.05567.
Hayakawa, T., & Arase, Y. (2020). Fine-Grained
error analysis on English-to-Japanese machine translation in
the medical
domain. Proceedings
of the 22nd Annual Conference of the European
Association for Machine
Translation (pp. 155–164).
Isabelle, P., Cherry, C., & Foster, G. (2017). A
Challenge Set Approach to Evaluating Machine
Translation. arXiv preprint
arXiv:1704.07431. 

Lommel, A., & Melby, A. K. (2018). Tutorial:
MQM-DQF: A good marriage (Translation quality for the 21st
Century). Proceedings
of the 13th Conference of the Association for Machine
Translation in the Americas (Volume 2: User
Papers).
Macketanz, V., Avramidis, E., Burchardt, A., Helcl, J., & Srivastava, A. (2017). Machine
translation: Phrase-Based, rule-based and neural approaches
with linguistic
evaluation. Cybernetics and
Information
Technologies, 17(2), 28–43. 

Michon, Elise, Josep Crego, & Jean Senellart (2020). Integrating
domain terminology into neural machine
translation. Proceedings
of the 28th International Conference on Computational
Linguistics. Barcelona, Spain (Online): International
Committee on Computational
Linguistics (pp. 3925–3937). 
Monti, J., Barreiro, A., Elia, A., Marano, F., & Napoli, A. (2011). Taking
on new challenges in multi-word unit processing for machine
translation. Second
International Workshop on Free/Open-Source Rule-Based
Machine
Translation (pp. 11–19). UOC. EDU.
Monti, J., Barreiro, A., Oroliac, B., & Batista, F. (2013). When
multiwords go bad in machine
translation. Machine
Translation Summit
XIV (pp. 26–33). The European Association for Machine Translation.
Peng, W., Huang, C., Li, T., Chen, Y., & Liu, Q. (2020). Dictionary-Based
data augmentation for cross-domain neural machine
translation. arXiv preprint
arXiv:2004.02577.
Ren, Z., Lü, Y., Cao, J., Liu, Q., & Huang, Y. (2009). Improving
statistical machine translation using domain bilingual
multiword
expressions. Proceedings
of the Workshop on Multiword Expressions: Identification,
Interpretation, Disambiguation and Applications (MWE
2009) (pp. 47–54). 
Rikters, M., & Bojar, O. (2017). Paying
attention to multi-word expressions in neural machine
translation. arXiv preprint
arXiv:1710.06313.
Sag, I. A., Baldwin, T., Bond, F., Copestake, A., & Flickinger, D. (2002). Multiword
expressions: A pain in the neck for
NLP. In International
Conference on Intelligent Text Processing and
Computational
Linguistics (pp. 1–15). Springer.
Scansani, R., Bentivogli, L., Bernardini, S., & Ferraresi, A. (2019). MAGMATic:
A multi-domain academic gold standard with manual annotation
of terminology for machine translation
evaluation. Proceedings of
Machine Translation Summit XVII Volume 1: Research
Track (pp. 78–86).
Thompson, B., Knowles, R., Zhang, X., Khayrallah, H., Duh, K., & Koehn, P. (2019). HABLex:
Human annotated bilingual lexicons for experiments in
machine
translation. Proceedings
of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP) (pp. 1382–1387).
Vintar, Ŝ. (2018). Terminology
translation accuracy in statistical versus neural MT: An
evaluation for the English-Slovene language
pair. Proceedings
of the Eleventh International Conference on Language
Resources and Evaluation (LREC
2018).
Zaninello, A., & Birch, A. (2020,). Multiword
expression aware neural machine
translation. Proceedings
of The 12th Language Resources and Evaluation
Conference (pp. 3816–3825).