References
Al Saied, H., Candito, M., & Constant, M. (2019). Comparing
linear and neural models for competitive MWE
identification. Proceedings
of the 22nd Nordic Conference on Computational
Linguistics (pp. 86–96). [URL]
Alegria, I., Ansa, O., Artola, X., Ezeiza, N., Gojenola, K., & Urizar, R. (2004). Representation
and treatment of multiword expressions in
Basque. Proceedings of the
Second ACL Workshop on Multiword Expressions: Integrating
Processing (pp. 48–55). [URL]. 
Bargmann, S. & Sailer, M. (2018). The
syntactic flexibility of semantically non-decomposable
idioms. In M. Sailer & S. Markantonatou (Eds.), Multiword
expressions: Insights from a multi-lingual
perspective (pp. 1–29). Language Science Press. 

Bejček, E., Straňák, P., & Pecina, P. (2013). Syntactic
identification of occurrences of multiword expressions in
text using a lexicon with dependency
structures. Proc. of the 9th
Workshop on Multiword
Expressions (pp. 106–115). [URL]
Belinkov, Y., & Bisk, Y. (2018). Synthetic
and natural noise both break neural machine
translation. ArXiv. [URL]
Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural
versus phrase-based machine translation quality: A case
study. arXiv [URL]. 
Colson, J. -P. (2019). Multi-Word
units in machine translation: Why the tip of the iceberg
remains problematic – and a tentative corpus-driven
solution. MUMTT 2019, the 4th
Workshop on Multi-word Units in Machine Translation and
Translation Technology. [URL]. 
Constant, M., Eryiǧit, G., Monti, J., van der Plas, L., Ramisch, C., Rosner, M., & Todirascu, A. (2017). Multiword
expression processing: A
survey. Computational
Linguistics, 43(4), 1–92. 

Corpas Pastor, G. (2013). Detección, descripción y contraste de las
unidades fraseológicas mediante tecnologías
lingüísticas. In I. Olza & E. Manero (Eds.) Fraseopragmática. Colección
Romanistik (pp. 335–373). Frank & Timme. [URL]
Derczynski, L., Ritter, A., Clark, S., & Bontcheva, K. (2013). Twitter
part-of-speech tagging for all: Overcoming sparse and noisy
data. In R. Mitkov, G. Angelova & K. Bontcheva (Eds.), Proceedings
of the International Conference on Recent Advances in
Natural Language
Processing (pp. 198–206). INCOMA Ltd. [URL]
DILEA – Penadés Martínez, I. (2019). arrimar el hombro. En
Diccionario de locuciones idiomáticas del
español actual. [URL]
DILEA – Penadés Martínez, I. (2019). poner los cuernos. En
Diccionario de locuciones idiomáticas del
español actual. [URL]
DLE – Real Academia
Española (2022). dejarse la piel. En
Diccionario de la Lengua
Española. [URL]
ELIS – European Language
Industry
Survey (2018). 2018
Language Industry Survey – Expectations and concerns of the
European language industry. [URL]
ELIS – European Language
Industry
Survey (2020). 2020
Language Industry Survey – 2020 before & after
COVID-19. [URL]
Fazly, A., Cook, P., & Stevenson, S. (2009). Unsupervised
type and token identification of idiomatic
expressions. Computational
Linguistics 35(1), 61–103. 

Finlayson, M., & Kulkarni, N. (2011). Detecting
multiword expressions improves word sense
disambiguation. Proceedings
of the ALC Workshop on MWEs (MWE
2011) (pp. 20–24). [URL]
Foufi, V., Nerima, L., & Wehrli, E. (2019). Multilingual
parsing and MWE
detection. In Y. Parmentier & J. Waszczuk (Eds.), Representation
and parsing of multiword expressions: Current
trends (pp. 217–237). Language Science Press. [URL]
Gui, T., Zhang, Q., Huang, H., Peng, M., & Huang, X. (2017). Part-of-speech
tagging for twitter with adversarial neural
networks. In M. Palmer, R. Hwa & S. Riedel (Eds.), Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language
Processing (pp. 2411–2420). Association for Computational Linguistics.
.
Hidalgo-Ternero, C. M. (2020). Google
Translate vs. DeepL: analysing neural machine translation
performance under the challenge of phraseological
variation. In P. Mogorrón Huerta (Ed.), Análisis multidisciplinar del fenómeno de la
variación en traducción e
interpretación / Multidisciplinary Analysis of the Phenomenon of
Phraseological Variation in Translation and
Interpreting. MonTI Special
Issue
6 (pp. 154–177). 

Hidalgo-Ternero, C. M. (2021). El algoritmo ReGap para la mejora de la
traducción automática neuronal de expresiones pluriverbales
discontinuas
(FR>EN/ES). In G. Corpas Pastor, M. R. Bautista Zambrana & C. M. Hidalgo-Ternero (Eds.), Sistemas fraseológicos en contraste: enfoques
computacionales y de
corpus (pp. 253–270). Comares.
Hidalgo-Ternero, C. M., & Corpas Pastor, G. (2020). Bridging
the ‘gApp’: improving neural machine
translation systems for multiword expression
detection. Yearbook of
Phraseology, 11, 61–80. 

Hidalgo-Ternero C. M., & Corpas Pastor, G. (2024/forthcoming). Qué se traerá gApp entre
manos … O cómo mejorar la traducción automática neuronal de
variantes somáticas
(ES>EN/DE/FR/IT/PT). In M. Seghiri & M. Pérez Carrasco (Eds.), Nuevas tendencias en traducción e
interpretación
especializadas. Peter Lang.
Hidalgo-Ternero, C. M. (2024/forthcoming). ¿DeepL, Google Translate o VIP? Qué sistema
ofrece un mejor rendimiento en la traducción de locuciones
continuas y
discontinuas. In G. Corpas Pastor & F. J. Veredas Navarro (eds.), Tecnologías lingüísticas multilingües:
desarrollos actuales y transición
digital. Comares
Honnibal, M., & Montani, I. (2017). spaCy
2: Natural language understanding with Bloom embeddings,
convolutional neural networks and incremental
parsing, 7.
Huang, P. S., Wang, C., Huang, S., Zhou, D., & Deng, L. (2018). Towards
neural phrase-based machine
translation. arXiv preprint
arXiv:1706.05565. [URL]
Junczys-Dowmunt, M., Dwojak, T., & Hoang, H. (2016). Is
neural machine translation ready for deployment? A case
study on 30 translation
directions. Arxiv. [URL]
Kilgarriff, A., Rychly, P., Smrz, P., & Tugwell, D. (2004). The
sketch engine. Proceedings
of the 11th EURALEX International
Congress (pp. 105–116).
Klyueva, N., Doucet, A., & Straka M. (2017). Neural
networks for multi-word expression
detection. Proceedings of
the 13th Workshop on Multiword Expressions (MWE
2017) (pp. 60–65). 
Lohar, P., Popović, M., Alfi, H., & Way, A. (2019). A
systematic comparison between SMT and NMT on translating
user-generated
content. 20th
International Conference on Computational Linguistics
and Intelligent Text Processing (CICLing
2019).
Maldonado, A., Han, L., Moreau, E., Alsulaimani, A., Chowdhury, K. D., Vogel, C., & Liu, Q. (2017). Detection
of verbal multi-word expressions via conditional random
fields with syntactic dependency features and semantic
re-ranking. Proceedings of
the 13th Workshop on Multiword Expressions (MWE
2017) (pp. 114–120). 
Martínez Alonso, H., & Zeman, D. (2016). Universal
dependencies for the AnCora
treebanks. Procesamiento del Lenguaje Natural,
[S.l.], 57, 91–98. ISSN
1989-7553. [URL]
Moreau, E., Alsulaimani, A., Maldonado, A., & Vogel, C. (2018). CRF-Seq
and CRFDepTree at PARSEME Shared Task 2018: Detecting verbal
MWEs using sequential and dependency-based
approaches. Proceedings of
the Joint Workshop on Linguistic Annotation, Multiword
Expressions and Constructions
(LAW-MWE-CxG-2018) (pp. 241–247).
Nagy, T., & Vincze, V. (2014). VPCTagger:
Detecting verb-particle constructions with syntax-based
methods. Proceedings of the
10th Workshop on Multiword Expressions (MWE
2014). Association for Computational Linguistics. 

Neunerdt, M., Trevisan, B., Reyer, M., & Mathar, R. (2013). Part-of-speech
tagging for social media
texts. In I. Gurevych, C. Biemann & T. Zesch (Eds.), Language
processing and knowledge in the
web. Lecture Notes in Computer
Science
8105 (pp. 139–150). Springer. 

Nothman, J., Ringland, N., Radford, W., Murphy, T., & Curran, J. R. (2017). Learning
multilingual named entity recognition from
Wikipedia. figshare. Dataset. 
Parra Escartín, C., Nevado Llopis, A., & Sánchez Martínez, E. (2018). Spanish
multiword expressions: Looking for a
taxonomy. In M. Sailer & S. Markantonatou (Eds.), Multiword
expressions: Insights from a multi-lingual
perspective (pp. 271–323). Language Science Press.
Ramisch, C. (2015). Multiword
Expressions Acquisition: A Generic and Open
Framework. Theory
and Applications of Natural Language Processing series
XIV. Springer. ISBN
978-3-319-09206-5. 

Ramisch, C., & Villavicencio, A. (2018). Computational
treatment of multiword
expressions. In R. Mitkov (Ed.), Oxford
Handbook on Computational
Linguistics (2ª
ed). 

Ramisch, C., Cordeiro, S. R., Savary, A., Vincze, V., Barbu Mititelu, V., Bhatia, A., Buljan, M., Candito, M., Gantar, P., Giouli, V., Güngör, T., Hawwari, A., Iñurrieta, U., Kovalevskaitė, J., Krek, S., Lichte, S., Liebeskind, C., Monti, J., Parra Escartín, C., …, & Walsh, A. (2018). Edition
1.1 of the PARSEME Shared Task on automatic identification
of verbal multiword
expressions. Proceedings of
the Joint Workshop on Linguistic Annotation, Multiword
Expressions and Constructions
(LAW-MWE-CxG-2018), (pp. 222–240). [URL]
Riedl, M., & Biemann, C. (2016). Impact
of MWE resources on multiword
recognition. Proc. of the
ACL 2016 Workshop on
MWEs (pp. 107–111). 
Rikters, M., & Bojar, O. (2017). Paying
attention to multi-word expressions in neural machine
translation. arXiv preprint
arXiv:1710.06313.
Rohanian, O., Taslimipoor, S., Kouchaki, S., An Ha, L., & Mitkov, R. (2019). Bridging
the gap: Attending to discontinuity in identification of
multiword
expressions. In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings
of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies
1 (pp. 2692–2698).
Schneider, N., Danchik, E., Dyer, C., & Smith, N. A. (2014). Discriminative
lexical semantic segmentation with gaps: Running the MWE
gamut. TACL, 2, 193–206. 

Shterionov, D., Superbo, R., Nagle, P., Casanellas, L. O, O’Dowd, T., & Way, A. (2018). Human
versus automatic quality evaluation of NMT and
PBSMT. Machine
Translation, 32, 217–235. 

Wang, X., Tu, Z., Xiong, D., & Zhang, M. (2017). Translating
phrases in neural machine
translation. Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language Processing (EMNLP
2017) (pp. 1421–1431). 
Wang, H., Wu, H. He, Z., Huang, L., & Church, K. W. (2022). Progress
in machine
translation. Engineering. (online
first, 14 July 2021). [URL]
Wyrwoll, C. (2014). User-Generated
content. Social
Media, 11–45. 

Zampieri, N., Ramisch, C., & Damnati, G. (2019). The
impact of word representations on sequential neural MWE
identification. Joint
Workshop on Multiword Expressions and WordNet (MWE-WN
2019) (pp. 169–175). 
Zaninello, A., & Birch, A. (2020). Multiword
expression aware neural machine
translation. Proceedings
of the 12th Conference on Language Resources and
Evaluation (LREC
2020) (pp. 3816–3825). [URL]